1(a). Xylem and phloem are tissues involved in bulk transport in vascular plants.

The structure of the two tissues is different because the mechanism of transport in the two tissues is different.

On Fig. 21.1, draw and label the position of xylem and phloem tissues in the stem of a dicotyledonous (broadleaved) vascular plant. Use the letter X to indicate the position of the xylem tissue and P to indicate the position of the phloem tissue.

Fig. 21.1
(b). How do the following differ in xylem and phloem tissue?
(i) The type of cells present.

(ii) The composition of the cell walls in the cells present.
\qquad
(i) Iron is essential for the activity of the nitrogen-fixing enzyme, nitrogenase.

Iron is present as ions in soil water but is not taken up by root nodules directly.

Describe how iron ions in soil water reach the root nodules.
\qquad
\qquad
\qquad
\qquad
\qquad

(ii) P. sativum provides the nitrogen-fixing bacteria with a four-carbon molecule that can be oxidised to produce oxaloacetate and reduced NAD.

State the metabolic pathway in which oxaloacetate is an intermediate.

* Explain a possible mechanism for the loading and transport of sugars in the phloem.
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad

4. Spices are used to enhance the flavour of food in many different cultures. Many different species of plants are grown for spice production. These spices include ginger and cumin.

Ginger is obtained from the root of the plant Zingiber officinale.

* Describe a practical procedure that could be used on roots of Z. officinale to confirm that this is a species of monocotyledonous plant.
\qquad
\qquad

\qquad

\qquad
\qquad

5. As the human population continues to grow there is an ever increasing need to increase food production.

Alfalfa is grown mainly for animal feed as it is rich in protein, minerals and vitamins. The leaves can also be used as a dietary supplement in human nutrition.

Fig. 4.1 below shows the transverse section of an alfalfa leaf.

Fig 4.1

In the space below draw a labelled and annotated low power plan of the transverse section of the alfalfa leaf shown in Fig. 4.1.
6. Flowering plants have developed organs, such as fruits, which act as 'sinks' in translocation.

Explain the role of a 'sink' in the mechanism of translocation.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
7. A student made the following comment:
'If most water vapour is lost from leaves through open stomata, more transpiration must happen during daylight hours.'

The student used the apparatus shown in Fig. 1.4 to test their hypothesis over a 24 hour period.

Fig. 1.4
(i) State the dependent variable in this investigation.
\qquad
(ii) Temperature is a variable that must be controlled in the investigation to obtain valid data.

State one other variable and explain how it will be controlled.

Variable \qquad

How variable is controlled \qquad
\qquad
\qquad
\qquad
8. State the correct term for the following definition.

The pathway that transports water along cell walls and between cells in plants.

9(a). Plants transport water and assimilates through specialised tissues.

Fig. 4.1 shows a tissue plan of a vertical section through part of a leaf.

Fig. 4.1
(i) On Fig. 4.1, identify with a letter X the position of the xylem and identify with a letter P the position of the phloem.

The answer to this question should be drawn on Fig. 4.1.
(ii) Name structure R.
(b). The majority of cells in phloem tissue are either companion cells or sieve tube elements.

A scientist isolated companion cells and conducted some experiments to investigate the mechanism involved in loading sucrose into the sieve tubes.

He recorded the following observations:

observation 1	isolated companion cells became slightly negatively charged compared with their
surroundings	

From observation 1, the scientist concluded that the mechanism involved a transfer of charged particles (ions) between the companion cells and their surroundings.
(i) What conclusions can be drawn from observations 2 and 3 about the mechanism?
\qquad
\qquad
\qquad
\qquad
(ii) What conclusions can be drawn from observation 4 about the mechanism?
\qquad
\qquad
(c). The scientist drew a diagram to explain the mechanism used to load sucrose into the sieve tube elements.

His diagram is shown in Fig. 4.2.

A

charged particles are removed from the companion cells

B

co-transport of charged particles and sucrose into the companion cells

C

sucrose moves into the sieve tube elements

Fig. 4.2
(i) The following paragraph is an extract from the scientist's work.

Complete the paragraph.

At step A, charged particles are moved out of the companion cells by the process of \qquad _ .

This creates a \qquad gradient between the companion cell and its surroundings. At step B, the charged particles and assimilates are co-transported by \qquad diffusion into the companion cells.

The assimilates build up in the companion cells and move by \qquad into the sieve
tube elements at step C. Assimilates, such as sucrose and \qquad can be loaded in this way.
(ii) The structure of cells is usually adapted to carry out their functions.

The scientist used an electron microscope to look for further evidence to support the mechanism involved in loading sucrose into the sieve tubes.

Suggest what evidence the scientist might expect to see in companion cells, using an electron microscope.
\qquad
\qquad
\qquad

10(a)

A potometer was used to investigate the effect of wind speed on the rate of transpiration in a leafy shoot.

The investigation was set up as shown in Fig. 33.

Fig. 33
To vary wind speed, a fan with five different speeds was positioned at a fixed distance from the leafy shoot.

The results of the investigation are shown in Table 33.

	Wind speed $\left(\mathbf{m ~ s}^{-1}\right)$	Rate of water uptake $\left(\mathrm{mm} \mathrm{min}^{\mathbf{- 1}}\right)$				
	Replicate 1	Replicate 2	Replicate 3	Mean	Standard deviation	
$\mathbf{1}$	0	0.3	0.3	0.3	0.30	0.00
$\mathbf{2}$	2	2.6	2.5	2.5	2.53	0.06
$\mathbf{3}$	4	5.0	4.8	4.9	4.90	0.10
$\mathbf{4}$	6	7.0	7.0	7.2	7.07	
$\mathbf{5}$	8	9.4	9.5	9.4	9.43	0.06

Table 33
(i) Give one piece of advice when setting up the potometer to ensure a continuous stream of water between the capillary tube and the shoot.
\qquad
(ii) Using information in Table 33, calculate the standard deviation for the data from row 4 (wind speed of $6 \mathrm{~ms}^{-1}$).
$s=\sqrt{\frac{\sum(x-\bar{x})^{2}}{n-1}}$
(iii) Describe and explain the data trend in Table 33.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
(iv) State two environmental variables that should have been controlled during this investigation.

1

2
(v) Explain why the potometer only gives an estimate of the rate of transpiration.
\qquad
\qquad

(b). Plants take up water into the root hairs. The water is then transported into the vascular tissue via the root cortex. Describe how water travels through the root cortex in the apoplastic and symplastic pathways.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

11(a) Water must enter plants via the roots and move through the tissues to enter the xylem vessels.
On Fig. 6, draw the apoplast pathway taken by water from point X in the soil to point Y in the $x y l e m$.

Fig. 6
(b). Complete the sentences below about the movement of water through xylem vessels.

As water molecules move through xylem vessels they are attracted to each other by \qquad forces.

The water molecules are also attracted to the walls of the xylem vessel by \qquad forces.

The walls of the xylem vessel are strengthened by \qquad which is impermeable to water.

The movement of water between xylem vessels can therefore only occur through pores,
known as \qquad

12(a) In 1908, American plant breeder George F. Freeman published a paper called 'A method for the quantitative determination of transpiration in plants'. Freeman was working on breeding drought-resistant varieties of alfalfa. He reasoned that individual plants with the lowest rates of transpiration would show greatest drought resistance and should be used in selective breeding.

The rate of transpiration can be measured by using:

- a potometer with a shoot cut from the plant
- a whole plant growing in a pot, where water loss is calculated by measuring loss of mass.

Freeman investigated whether results obtained using a potometer were comparable with those obtained with whole plants. He measured the rate of transpiration in four types of plant by using either a potometer with cut shoots or whole plants growing in pots. The results are shown in Table 2.1.

Plant	Average rate of transpiration $/ \mathrm{mg} \mathrm{cm}^{-2}$ leaf hr^{-1}		Rate of transpiration in potometer as percentage of transpiration in pots (\%)
	Pots	Potometer	
Daisy	7.21	1.44	
Coleus	2.77	0.37	
Portulaca	1.72	0.47	100.0
Geranium	0.65	0.65	

Table 2.1

Complete Table 2.1 by calculating the missing percentages for Coleus and Portulaca.

Show your working.
(b).
(i) Temperature was controlled in this experiment. State two other variables that should be controlled to ensure valid results in this experiment.

1

2 \qquad
(ii) Freeman made the following conclusions:

- There is a large difference between the rate of transpiration of a plant growing on its own roots ('normal' transpiration) and that of a cut shoot of the same plant placed in water.
- The difference is greatest in those plants having the highest rate of 'normal' transpiration.

Does the data in Table 2.1 support Freeman's conclusions? Give reasons for your answer.
\qquad
\qquad
\qquad
\qquad

(c). Freeman then designed an experiment to allow him to measure the rate of transpiration in an alfalfa plant growing in soil in a greenhouse. Fig. 2 shows the apparatus he used.

Fig. 2

The aspirator created a steady flow of air into the cylinder past the stem of the alfalfa and through the U-tube. Phosphorous pentoxide $\left(\mathrm{P}_{2} \mathrm{O}_{5}\right)$ absorbed any water in the air flowing through the U-tube. The mass of the U-tube was measured at ten minute intervals for one hour in order to calculate the rate of transpiration.

The results of one experiment are shown in Table 2.2.

Time (min)	Increase in mass of U-tube (mg)
0	0
10	65
20	120
30	184
40	255
50	309
60	379

Table 2.2
(i) Plot a graph of the results in Table 2.2 on the grid below.

	T	T	T	T	T	T	T	T	T	T	T	T	T	T	\square	-	T	T	T	T	T	\square	\square	T	\square								

(ii) The total area of leaves inside the cylinder was $22.28 \mathrm{~cm}^{2}$. Use this value and your graph to calculate the rate of transpiration.

Give your answer in standard form to two decimal places.
units $=$

13(a) A student used the following procedure to test different organs from a tomato plant for the presence of sucrose.

1. Remove a leaf from the tomato plant and after dipping it into boiling water grind it using a mortar and pestle.
2. Add water to the ground up leaf and filter the mixture.
3. Pour a small sample of the filtrate into a test tube and add dilute hydrochloric acid.
4. Place the test tube into a water bath.
5. Remove the test tube from the water bath and add sodium hydrogen carbonate.
6. Add Benedict's reagent and then place the test tube back into the water bath.
7. Record the colour of the contents of the test tube.
8. Repeat steps 1 to 7 with stem and root samples taken from the same tomato plant.

Table 5 shows the observations recorded by the student.

Plant organ being tested	Observations
Leaf	Blue-green
Stem	Green-orange
Root	Blue-green

Table 5

(i) The student made the following statement:

My observations support the theory of translocation.
Using the information in Table 5 and your knowledge of translocation discuss the validity of this statement.
(ii) State three modifications to the procedure that would allow the observations in Table 5 to be reproducible.

1

2
\qquad

3
\qquad
(b). Tomato plants are broad-leaved crop plants.

Compare the structure of a tomato plant with that of a cereal crop plant, such as wheat with regards to their transport systems.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

END OF QUESTION PAPER

Mark Scheme

Question			Answer/Indicative content	Marks	Guidance
1	a		vascular bundles drawn with both tissues AND arranged in a circle just inside the circle (1) bundle to have phloem / P on the outside and xylem / X on the inside (1)	2	Fig 21.1
	b	i	xylem contains, xylem vessels (tracheids / fibres), phloem contains, sieve tube (elements) and companion cells (1)	1	ALLOW xylem has lignin, phloem does not
		ii	xylem has cellulose and lignin, phloem has cellulose	1	
			Total	4	
2		i	any 3 from: (active transport) into root hairs (1) apoplast / symplast pathway (1) through epidermis / cortex layers (1) via xylem vessel to (root) nodule (1)	3	
		ii	Krebs cycle	1	ALLOW TCA cycle / citric acid cycle
			Total	4	

Mark Scheme

Mark Scheme

Question	Answer/Indicative content	Marks	Guidance
	Level 2 (3-4 marks) A description of some of the stages in sectioning, staining, mounting and microscopy is given with some features of monocot root structural features. There is a description of methodology which has some structure. The information presented is largely relevant. Level 1 (1-2 marks) A description of either sectioning, staining, mounting or microscopy is given. Features of monocot root structure may be missing or incorrect. There is a description of some methodology which may be unstructured. Some irrelevant or incorrect information may be presented. 0 marks No response or no response worthy of credit.		
	Total	6	

Mark Scheme

| Question | | Answer/Indicative content | Marks | Guidance |
| :--- | :--- | :--- | :--- | :---: | :--- |$|$| 7 | |
| :--- | :--- |
| | |

Question		Answer/Indicative content	Marks	Guidance	
8			apoplast / apoplastic ;	1	$\begin{array}{l}\text { Mark the first answer for each question } \\ \text { part. If the answer is correct and a further } \\ \text { answer is given that is incorrect or } \\ \text { contradicts the correct answer then }=0 \\ \text { marks } \\ \text { Examiner's Comments }\end{array}$
This term was well known to the majority of					
candidates.					

Question		Answer/ndicative content	Marks	Guidance	
9	a	i	letter X marking upper part of vascular bundle and letter P marking lower part of vascular bundle ;		

Question		Answer/Indicative content	Marks	Guidance
b	i	(the charged particles are) hydrogen ions / H^{+}/ protons ; (ions are) moved out of the cells / move into surrounding (solution) ;	2	IGNORE descriptions of observations 2 and / or 3 IGNORE ref to $\mathrm{OH}^{\text {? } / \text { alkaline substances }}$ Note do not need to refer to hydrogen ions for mp 2 Note that 'hydrogen ions move out of the cell' $=2$ marks Examiner's Comments Candidates were provided with the results of an investigation and asked to draw conclusions from the evidence. Most candidates correctly identified the charged particles as hydrogen ions and many appreciated that these ions were moved out of the companion cells. Other candidates seemed confused and referred to acidic substances or alkaline substances rather than to ions. Many candidates tried to describe the process of active loading rather than focus their response on the specific question asked. It is important to train candidates to read the question carefully and restrict their response to answering only that question.
	ii	active transport involved / cyanide prevents active transport / (mechanism) is active / (mechanism) needs energy / (mechanism) needs ATP ;	1	IGNORE descriptions of observation 4 e.g. no ATP is made IGNORE 'mechanism / active loading, does not work in presence of cyanide' as too vague Examiner's Comments Many candidates appreciated that the evidence suggested a need for ATP and an active process to ensure that the hydrogen ion concentration gradient is set up. However, many candidates simply stated that respiration must occur for the process to go ahead.

Question		Answer/Indicative content	Marks	Guidance
c	i	active transport ; concentration / pH / H H^{+}proton / electrochemical ; facilitated ; diffusion ; amino acids ;	5	Mark the first answer. If the answer is correct and a further answer is given that is incorrect or contradicts the correct answer then = 0 marks IGNORE active loading IGNORE high DO NOT ACCEPT diffusion ACCEPT facilitated diffusion ACCEPT plasmodesmata DO NOT CREDIT facilitated diffusion DO NOT CREDIT glucose / fructose / ions Examiner's Comments Was a gap fill question in which the candidate's knowledge of the active loading process was tested. Most candidates scored two or three marks appreciating that active transport must be required to create a concentration gradient and that the hydrogen ions must move through the membrane by facilitated diffusion, while the sucrose could diffuse through plasmodesmata into the sieve tube. Few candidates appreciated that assimilates are molecules that have become part of the organism and that amino acids are often transported. This part of the question was more difficult as the molecule mentioned had to be an assimilate and one that is transported in the phloem.

| Question | | Answer/Indicative content | Marks | Guidance |
| :---: | :---: | :---: | :--- | :---: | :--- |
| | ii | many / large, mitochondria ;
 plasmodesmata (between companion cell
 and sieve tube) / described ;
 many ribosomes / extensive RER;
 many proteins in the, plasma / cell surface,
 membrane; | 2 | |

Mark Scheme

Question			Answer/Indicative content	Marks	Guidance
10	a	i	any 1 from: cut shoot under water \checkmark connect shoot to rubber tubing under water \checkmark ensure tight fit between shoot and rubber tubing \checkmark seal with Vaseline \checkmark set up the potometer under water \checkmark	max 1	Examiner's Comments (a)(i) and (b) tested AO1, with most of the remainder testing AO2 criteria. In (a)(i) the question addressed practical procedures and it was encouraging to see that most candidates were familiar with the setting up of the potometer.
		ii	$0.12 \checkmark \checkmark$	2	ALLOW unrounded answer (0.115758...) for 1 mark Examiner's Comments The calculation of the standard deviation in (a)(ii) caused a few problems, although more than 50% achieved the full 2 marks. The most common mistake was candidates who thought that $n-1=4$ (the number of treatments minus 1) rather than $n-1=2$ (the number of replicates minus 1). Candidates should remember that the standard deviation is a measure of variation around the mean and n is the number of values that make up the mean.
		iii	Description: faster the wind speed, faster the (rate of) water uptake \checkmark Explanation: wind increases water (vapour) potential gradient (between airspaces in leaf and air in environment) \downarrow faster diffusion of water vapour / increased transpiration rate \checkmark	3	ORA ALLOW wind increases concentration / diffusion gradient Examiner's Comments (a)(iii) required a description of the data which was done well, followed by an explanation which they found more difficult. Few candidates could give a clear and succinct explanation. To achieve full marks candidates needed to give a clear link to increasing air movement reducing the water (vapour) potential around the stomata so that there was a steeper water (vapour) potential gradient. Too many candidates referred to water being blown off the leaf, some even describing droplets being blown away or water moving out of the leaf by osmosis.
		iv	humidity \checkmark light intensity \checkmark temperature \checkmark	max 2	Examiner's Comments (a)(iv) was answered well and only a few candidates did not achieve these marks.

Mark Scheme

Question		Answer/Indicative content	Marks	Guidance			
		v	$\begin{array}{l}\text { water used in photosynthesis / hydrolysis } \\ \checkmark \\ \text { water produced in respiration / } \\ \text { condensation reactions } \checkmark \\ \text { water used to maintain turgor pressure } \checkmark\end{array}$	max 2	$\begin{array}{l}\text { Examiner's Comments } \\ \text { There was a poor understanding of what } \\ \text { was required by (a)(v). Although many } \\ \text { candidates seemed to appreciate that } \\ \text { water uptake was not the same as } \\ \text { transpiration, fewer were able to explain }\end{array}$		
that water was used (and produced) in the							
plant. The most common correct answer							
was that water was used in photosynthesis							
but it was disappointing to see that few							
candidates appreciated that water is							
essential to maintain the turgor of a plant.						$]$	b
:---							

Question		Answer/Indicative content	Marks	Guidance
11	a	line passes through cell wall line passes around Casparian strip \downarrow	2	Note: line must begin from an external cell wall Examiner' Comments The apoplastic pathway was often incorrectly drawn by candidates and water often shown to pass through the Casparian strip.
	b	cohesive $\sqrt{ }$ adhesive lignin (bordered) pits	4	Examiner' Comments Candidates usually scored well for Q6(d) however plasmodesmata were often given, incorrectly, as the last point.
		Total	6	

Question		Answer/ndicative content	Marks	Guidance	
12	a		(Coleus \& Portulaca respectively) 13.4 AND 27.3 \checkmark	1	Examiner's Comments This was well answered with the majority of candidates achieving the mark. The most common error was failure to express the values to three significant figures, in line with the rest of the results in the table of data.
b	i	(relative) humidity \checkmark air movement / draughts \checkmark light intensity \checkmark water (given to pot plants) \checkmark	2 max	ALLOW wind for 'air movement' Examiner's Comments	
This was well answered with candidates clearly focusing on the main factors that have an effect on the rate of transpiration. There were general controlled variale answers like pH, so candidates culd be reminded of the 'washing line' principle for factors that speed up the rate of transpiration.					

Mark Scheme

Question		Answer/Indicative content	Marks	Guidance

Question		Answer/Indicative content	Marks	Guidance
		Total	12	

Question		Answer/ndicative content	Marks	Guidance	
13	a	i	Support statement (blue-green) result in leaf shows little sucrose present OR (green-orange) result in stem shows (greater) concentration of sucrose present (so) supports loading of sucrose into phloem, from source / as it is produced \checkmark (blue-green) result in root shows sucrose is used by, roots / sinks \checkmark (so) supports starch formation/use in respiration Do not support statement idea that (Benedict's) test does not distinguish between reducing and non- reducing sugars \checkmark the blue-green result for , leaf / root , extract could be interpreted as a negative test \checkmark	max 4	

Question		Answer/Indicative content	Marks	Guidance
b		tomato plants are dicot(yledon)s AND cereal crops are monocot(yledon)s \checkmark Differences tomato plant leaves have branching veins \checkmark tomato plant stems have vascular bundles arranged in rings \checkmark AVP \checkmark Similarities both have vascular bundles \checkmark	3	2 max for differences ALLOW ora e.g. xylem in tomato plant root arranged in shape of cross ora ALLOW both have phloem / xylem Examiner's Comments Some candidates did not remember the vascular bundle arrangement in dicot roots and stems, and gave an answer that was the wrong way around. There were also a few unusual spellings of monocotyledon and dicotyledon. Transport systems were quite often referred to with no other detail and it was also stated by some candidates that monocots do not need these systems or need smaller systems.
		Total	10	

